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EXECUTIVE SUMMARY

This report discusses the results of the experimental program focused on the performance
of service saddles under monotonic shear loading. The saddles are commonly used for providing
a connection between a customer service line and a larger diameter distribution pipeline for potable
water. In this experimental program, the service saddles manufactured by PowerSeal Pipeline
Products Corporation were compared to those currently used by the East Bay Municipal Utility
District (EBMUD). The tests were conducted under shear loading up to failure of the saddle or a
significant leak. The performance of the finite element model was validated using the experimental
results obtained from distributed fiber optic sensors, which can be used to examine and predict the
behavior of the pipe and saddle in whole process. The knowledge gained from the comprehensive
laboratory tests and finite element models provides the reference for future test improvements and
optimization in the saddle design.
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1 Introduction

This report discusses the results of tests conducted on a conventional saddle and the service
saddle manufactured and supplied by PowerSeal Pipeline Products Corporation (PowerSeal
herein). PowerSeal model 3450AS shown in Figure 1-1 was selected for this study. Specifications
of the saddle are provided in Appendix A [1].

Figure 1-1. PowerSeal model 3450AS saddle

In this study, a finite element (FE) analysis is conducted to simulate the pipe and saddle
behavior under monotonic shear loading. This is accomplished by utilizing an elastoplastic
material model in ABAQUS and comparing the predicted values with the experimental results.

2 Experimental Setup

A special experimental setup was developed at the Center for Smart Infrastructure (CSI),
UC Berkeley. It was based on the utilization of a self-reacting frame that accommodated both the
loading and reacting parts as presented in Figure 2-1. Special jackets were designed and fabricated



to hold the water distribution pipeline in place. A 120-kip hydraulic actuator was used to apply the
force via a loading fixture.

A ductile iron pipe manufactured by US Pipe with a nominal diameter of 6-in was used in
the tests. A service tap hole in the pipe was drilled by utilizing the tools provided by EBMUD as
presented in Figure 2-2. Since the service line is much more flexible than the distribution line it
was assumed that their interaction is negligible. Hence, the service line was not installed.

|4 oY actuator
!
!

Weld bead

Figure 2-1. Schematic drawing of experimental setup



Figure 2-2. Drilling a tap hole in distribution pipeline through a saddle

An overall view of the fully assembled experimental setup is presented in Figure 2-3. Since
the primary intention of the project was to study the saddle performance under shear loading
(without applying any moment) a pivoting hoist ring was used as the loading element. This detail
of the load application is presented in Figure 2-4.



Figure 2-4. Detail of load application

Instrumentation and Specimen List

Instrumentation consisted of conventional instruments and fiber-optic sensors.



3.1 LOCATIONS OF CONVENTIONAL INSTRUMENTS

A schematic drawing showing the locations of the conventional instruments is presented
in Figure 3-1. The actuator has a position transducer and a built-in load cell. The pipe was
pressurized to 70 psi and the pressure inside of the pipe was monitored by a pressure transducer
installed on one of the endcaps. An air release valve was installed on another endcap. Six strain
gages were installed on the pipeline. An additional position transducer was installed to monitor
the displacement of the saddle right next to the loading point as presented in Figure 3-2.

~~ Pressure transducer

4 Displacement
(actuator)

Figure 3-1. Locations of conventional instruments
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Figure 3-2. Additional position transducer at saddle

An instrumentation list showing the column number in the data file, name of the channel,
description and location for each transducer is presented in Table 3-1.

Table 3-1. Instrumentation list

Data Channel name Description or location
column
3 Pacific - 1 (0:1:0) actdisp Actuator displacement
4 Pacific - 2 (0:1:1) load Actuator force
5 Pacific - 3 (0:1:2) novol Saddle displacement
6 Pacific - 4 (0:1:3) press Water pressure
7 Pacific - 9 (0:2:0)r rgt center Strain gage (right): center
8 Pacific - 10 (0:2:1) rgt offset Strain gage (right): circumference
9 Pacific - 11 (0:2:2) rgt circum Strain gage (right): offset
10 Pacific - 12 (0:2:3) left cente Strain gage (left): center
11 Pacific - 13 (0:2:4) left offse Strain gage (left): circumference
12 Pacific - 14 (0:2:5) left circu Strain gage (left): offset

3.2 LOCATION OF FIBER-OPTIC SENSORS

The NanZee NZS-DSS-CO07 fiber-optic cable was installed on both the pipeline and the
saddle by the 3M structural plastic adhesive DP8010. Schematic drawings showing the location of
the fiber-optic sensors for the benchmark saddle and the PowerSeal saddle are presented in Figure
3-3 and Figure 3-4, respectively. The same piece of the distribution pipeline was used throughout
the experimental program and only the saddle was change from test to test. The locations are the
same on the pipeline but different on the saddles due to the different designs of two saddles.
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Figure 3-3. Locations of fiber-optic sensors for the Benchmark saddle
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Figure 3-4. Locations of fiber-optic sensors for the PowerSeal saddle

3.3 TEST SPECIMENS

A total of seven tests (three on the conventional saddle and four on PowerSeal saddle) were
conducted as listed in Table 3-2. The first saddle from PowerSeal had type 304 straps, shown in
Figure 1-1 and listed in the saddle’s specifications in Appendix A. The second and third saddles
arrived with straps of another design as presented in Figure 3-5, which have a different design on
the connection part between the bolt and the strap. Based on the experiments conducted on these
straps, they have a much lower capacity than the ones shown in Figure 1-1. Thus, the straps used
on the first test (PS1) were re-used for the second (PS2) and the third (PS3) tests. The performance
of PowerSeal saddle with the low-capacity strap was tested in the fourth test (PS2-NewStraps).
The performance of PowerSeal saddles was compared to that of the benchmark with the same
application of the torque to the nuts pre-tensioning the straps to the pipe. Tests were performed on



three different torque conditions (70, 85 and 100 ft-1b), increased in 15 ft-lb increments starting
from the 70 ft-1b as recommended in the specifications [1].

Table 3-2. Test log

Test No Specimen -I;?tr_?t;e Test runs | Test date Note
1 Benchmarkl 70 Run872 | 3/30/2022
2 Benchmark2 85 Run875 | 4/19/2022 Fiber-optic sensors
were not used.
3 Benchmark3 100 Run878 5/2/2022
4 PS1 70 Run874 | 4/8/2022
Straps from PS1 were
5 PS2 85 Run879 5/4/2022 re-used (see Figure
1-1).
Straps from PS1 were
6 PS3 100 Run880 5/4/2022 re-used (see Figure
1-1).
Low-capacity straps
7 PS2-NewsStraps 85 Run877 5/2/2022 | were used (see Figure
3-5): type 304 strap

Stainless steel type

304 strap

Figure 3-5. Straps with lower capacity

4 Test results of conventional instruments

All test results of conventional instruments are discussed in this section. In addition, this
section includes a summary of the typical failure modes and performance parameters of the saddles
under the monotonic shear loading.



41 TEST DATA ANALYSIS

For a given applied torque, a monotonic pull parallel to the longitudinal axis of the pipeline
was applied. The tests were conducted up to failure of the saddle or a significant water leak. This
report summarized peak values of the force and the respective displacement at maximum force
obtained from the test data. The test results are provided in pairs for each torque value comparing
the saddle from PowerSeal to the benchmark. The results for the torque at 70 ft-1b are shown in
Figure 4-1. The results for 85 ft-Ib and 100 ft-Ib torque values are shown in Figure 4-2 and Figure
4-3, respectively. The results for PowerSeal saddles with different straps at 85 ft-Ib torque are
shown in Figure 4-4.

It is worth noting that the maximum forces in the benchmark tests are closely correlated to
a significant pressure drop because of the saddle’s failure in shear. The pressure drop in the case
of the PowerSeal saddles is less noticeable at the first leak, because it started from a few drops and
gradually increased during the test.

Load vs. displacement at 70 ft-lb
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Figure 4-1. Test results for 70 ft-Ib torque



Load vs. displacement at 85 ft-lb
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Figure 4-2. Test results for 85 ft-Ib torque

Load vs. displacement at 100 ft-lb

12000

10000 4

8000 4

6000

Force, Ibs

4000 4

2000 A

—— BM3

O D=0.68in; F=4739.51bs
— PS3

o D=1.22in; F =10966.6 Ibs

0.0

0.2 0.4 0.6 D.IS 1a 12 14
Displacement, in

Figure 4-3. Test results for 100 ft-1b torque
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Load vs. displacement at 85 ft-lb for different straps
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Figure 4-4. Test results for PowerSeal saddles with different straps at 85 ft-Ib torque

4.2 FAILURE MODES

The failure modes of the benchmark and the PowerSeal saddles were completely different
from one another. The tests on the benchmark saddles were stopped because of the failure of the
saddle and an explosive water release as presented in Figure 4-5. The force dropped right after the
failure for the benchmark saddle cases.

,3\ = " - ',5"

Saddle Testing at CSI (UC Berkeley): Sp1

Figure 4-5. Typical failure of benchmark saddle

11



Water leaked from the PowerSeal saddles started at a level of a few drips as presented in
Figure 4-6. The testing of the PowerSeal saddles was stopped when the gradually increasing water
leak turned into a significant leak (at which the maximum force was recorded). It is worth noting
that the benchmark saddle was completely sheared off, whereas the PowerSeal saddles just slid off

Ty \

s\l\"jﬂ \= BT |

e — | e g TN W

Water from the dripping leak

Figure 4-6. PowerSeal saddle: dripping water leak close to the maximum force

43 COMPARATIVE SUMMARY OF TEST DATA

A summary of the test results obtained for the benchmark saddles is presented in Table 4-
1. The average of the maximum force is 5400 Ibs. with a coefficient of variation (COV) of 11.5%.
The respective displacement at the maximum load has a lower COV of about 4.9% with an average
of 0.72 in.

Table 4-1. Summary of test results for benchmark saddle

Specimen Torque (ft-lb) | Testruns | D@Fmax, iN | Fmax, 1bs.
Benchmarkl 70 Run872 0.75 5967
Benchmark2 85 Run875 0.72 5494
Benchmark3 100 Run878 0.68 4739.5

Mean: 0.72 5400
STD: 0.04 619
CoV, %: 4.9% 11.5%

A summary of the test results obtained for the PowerSeal saddles is shown in Table 4-2.
The average of the maximum force is 10119.7 Ibs. with a coefficient of variation (COV) of 7.4%.
The respective displacement at the maximum load has COV of 8.4% with an average of 1.17 in.

Table 4-2. Summary of test results for PowerSeal saddle

12



A displacement normalized to that of the benchmark at 70 ft-1b torque is presented in Figure
4-7. Results show that the PowerSeal saddle has at least a 40% higher displacement capacity than
the conventional saddle. A maximum force normalized to that of the benchmark at 70 ft-1b torque
is shown in Figure 4-8. The PowerSeal saddle has at least a 60% greater force capacity than the
conventional saddle. The PowerSeal saddle did not fail in a dramatic way. An explosive water leak

Specimen Torque (ft-lb) | Test runs D@Fmax, in Fmax, ID
PS1 70 Run874 1.24 9858
PS2 85 Run879 1.06 9534.5
PS3 100 Run880 1.22 10966.6

Mean: 1.17 10119.7
STD: 0.1 751
CoV, %: 8.4% 7.4%

happened in the case of the benchmark saddle.
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Figure 4-7. Normalized displacement
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Figure 4-8. Normalized force

110

A summary of the test results obtained for the PowerSeal saddles with original straps
and low-capacity straps is shown in Table 4-3. With the same torque value (85 ft-Ib), results
show that the PowerSeal saddle with the original straps (PS2) has similar displacement
capacities but 47% greater force capacity than the one with the low-capacity straps (PS2-
NewsStraps).

Table 4-3. Summary of test results for PowerSeal saddles with different straps

Specimen Torque (ft-Ib) | Test runs D@Fmax, in Fmax, Ib
PS2 85 Run879 1.06 9534.5
PS2-NewStraps 85 Run877 1.076 6467.0

14

5 Test results of fiber-optic sensors

All test results of fiber-optic sensors are discussed in this section.



5.1 TEST DATA ANALYSIS

LUNA ODiSI 6104 Optical Distributed Sensor Interrogator (LUNA) was used in the tests.
The settings for LUNA in each test are presented in Table 5-1. More details about LUNA and
distributed fiber-optic sensing are provided in Appendix C.

Table 5-1. Setting for LUNA

Test No Specimen -I;?tr-(lqlf)e Testruns | Test date Ga(grf]ral)tch Mgizrg_rrz ;nt
1 Benchmarkl 70 Run872 3/30/2022 0.65 6.25
2 Benchmark2 85 Run875 4/19/2022 N/A N/A
3 Benchmark3 100 Run878 5/2/2022 0.65 6.25
4 PS1 70 Run874 4/8/2022 0.65 4.167
5 PS2 85 Run879 5/4/2022 1.3 8.333
6 PS3 100 Run880 5/4/2022 1.3 8.333
7 PS2-NewsStraps 85 Run877 5/2/2022 0.65 4.167

For the convenience of data processing, the fiber-optic cables were indexed by segments.
The index for Benchmarkl and Benchmark3 is presented in Figure 5-1. The index for PS1 is
presented in Figure 5-2. The index for PS2, PS3, and PS4 is presented in Figure 5-3. In this section,
all the indices will refer to the ones shown in Figure 5-3.

—Saddle
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S6_END S6_START] 59 2 Enp S2_START
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Figure 5-1. Index for the fiber-optic cables for Benchmarkl and Benchmark3
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Figure 5-2. Index for the fiber-optic cables for PS1
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Figure 5-3. Index for the fiber-optic cables for PS2, PS3, and PS4
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The fiber-optic data collected from Sensor 7, Sensor 8, and Sensor 13 are compared
and analyzed in this report. Sensor 7 was installed along the longitudinal direction of the
pipeline (Figure 5-4). Sensor 8 was installed along the circumferential direction of the
pipeline (Figure 5-5). Sensor 13 was installed on the strap (Figure 5-6). The test results of all
fiber-optic sensors are provided in Appendix D.
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Figure 5-4. Location of Sensor 7 (the blue segment along the longitudinal direction of the

pipeline)
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Figure 5-5. Location of Sensor 8 (the blue segment along the circumferential direction of
the pipeline)
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Figure 5-6. Location of Sensor 13 (the blue segment on the strap)

5.1.1 Comparison between strain gage and fiber-optic data

The strain gage and fiber-optic data collected from BM1 in both longitudinal and
circumferential directions are compared and analyzed to validate the reliability of the fiber-optic
data.

In the longitudinal direction, the end point of Sensor 7 is compared with the strain gage
(Pacific - 9 (0:2:0)r rgt center). The result is presented in Figure 5-7.
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Figure 5-7. Comparison between the strain gage and fiber-optic data in the longitudinal
direction on the pipeline

In the circumferential direction, the start point of Sensor 8 is compared with the strain
gage (Pacific - 11 (0:2:2) rgt circum). The result is presented in Figure 5-8.
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Figure 5-8. Comparison between the strain gage and fiber-optic data in the
circumferential direction on the pipeline
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It can be found that in both longitudinal and circumferential directions, the fiber-optic
data has similar trends as the strain gage data but with smaller magnitudes, which might be
mainly due to the different locations of the fiber-optic sensors and strain gages. In order to avoid
the large bending angle of the fiber-optic cable, the end point of Sensor 7 and the start point of
Sensor 8 were installed more than 2 inches away from the saddle. While the strain gages do not
have this limitation, they were intentionally installed much closer to the saddle, which were
about 0.5 inches away from the saddle (Figure 5-9). Thus, it is expected that the strain gages
would measure larger strains than the fiber-optic sensors.

Start Point of
Sensor 8

N

o
_— .
Ll

B

End Point of

Sensor 7
et

:‘;. &
k- 5:? Strain Gages

Figure 5-9. Locations of strain gages and the data points of fiber-optic sensors for BM1

5.1.2 Comparison between benchmark and PowerSeal saddles

The fiber-optic data of benchmark and PowerSeal saddles are compared and analyzed here
to further access their performance under the monotonic shear loading. Because the fiber-optic
cable installations on two saddles are different, only the results of the fiber-optic sensors on the
pipeline (Sensor 7 and Sensor 8) of Benchmarkl and PS1 are compared herein.

The results of the strain distribution on Sensor 7 at loading of 5500 Ibs. for Benchmark 1
and PS1 are shown in Figure 5-10. The results of the maximum strains changing with the loading
and displacement on Sensor 7 for the two tests are shown in Figure 5-11. It can be found that, in
the longitudinal direction, before Benchmarkl failed, the strain distributions and the maximum
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strain developments on the pipeline were very similar for Benchmarkl and PS1. In addition, the
strain on the pipeline would become larger when it got closer to the saddle.
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Figure 5-10. Strain distribution on Sensor 7 at load of 5500 Ibs.
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Figure 5-11. Maximum strain on Sensor 7

The results of the strain distribution on Sensor 8 at loading of 5500 Ibs. for Benchmark1
and PS1 are shown in Figure 5-12. The results of the maximum and minimum strains changing
with the loading and displacement on Sensor 8 for the two tests are shown in Figure 5-13. In the
circumferential direction, the strain distributions and the maximum and minimum strain
developments on the pipeline also had very similar trends for the two tests, but the strains for
Benchmarkl were slightly larger than the ones for PS1 in terms of the magnitude before
Benchmark1 failed. In addition, it is worth noting that as the start point and end point of Sensor 8
were both at the middle of the pipeline in the front (Figure 5-5), it can be found that, the pipeline
would experience tension on the front and back of the pipeline, and compression on the top and
bottom of the pipeline in its circumferential direction (Figure 5-14). It indicated that the pipeline
was slightly squeezed by the saddle along its latitudinal axis while the saddle was pulled
monotonically.
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Figure 5-12. Strain distribution on Sensor 8 at load of 5500 Ibs.
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Figure 5-13. Maximum and minimum strain on Sensor 8

Sensor 8 Start

Back

22



Figure 5-14. Cross-section of the pipeline

5.1.3 Comparison of PowerSeal saddles with different torques

Fiber-optic results of the PowerSeal saddles under three different torque conditions (70
ft-Ib, 85 ft-lb, and 100 ft-1b) are compared and analyzed in this section.

The results of the strain distribution on Sensor 7 at loading of 9000 Ibs. for PS1 (70 ft-1b),
PS2 (85 ft-1b), and PS3 (100 ft-1b) are shown in Figure 5-15. The results of the maximum strains
changing with the loading and displacement on Sensor 7 for three tests are shown in Figure 5-16.
The results of the strain distribution on Sensor 8 at loading of 9000 Ibs. for PS1, PS2, and PS3
are shown in Figure 5-17. The results of the maximum strains changing with the loading and
displacement on Sensor 8 for three tests are shown in Figure 5-18, and the results of the
minimum strains are shown in Figure 5-19.

It is worth noting that in the longitudinal direction, the strain distributions on the pipeline
for three tests were very similar. However, under the same loading and displacement conditions,
the saddle with smaller torques would lead to larger maximum strains on the pipeline. In the
circumferential direction, the strain distributions and the maximum and minimum strain
developments on the pipeline had very similar trends, but the saddle with smaller torques would
cause larger strains on the pipeline in terms of the magnitude. It might be because the saddle with
smaller torques would have a larger rotating angle 6 under the monotonic pulling, which would
create a larger moment on the pipeline and result in larger strains on the side opposite to the
pulling direction (Figure 5-20).
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Figure 5-15. Strain distribution on Sensor 7 at load of 9000 Ibs.
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Figure 5-17. Strain distribution on Sensor 8 at load of 9000 Ibs.
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Figure 5-18. Maximum strain on Sensor 8
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Figure 5-19. Minimum strain on Sensor 8

Figure 5-20. Rotation of the saddle under pulling

The results of the strain distribution on Sensor 13 at loading of 9000 Ibs. for PS1 (70 ft-
Ib), PS2 (85 ft-1b), and PS3 (100 ft-Ib) are shown in Figure 5-21. The results of the maximum
strains changing with the loading and displacement on Sensor 13 for three tests are shown in
Figure 5-22. On the saddle, it can be noticed that compared to the ones for PS1 and PS3, the
strain distribution for PS2 had a similar trend but a much smaller magnitude. It might be because
the fiber-optic cables were not fully sticked on the straps in this test. As a result, PS2 also had a
smaller maximum strain than PS1 and PS3 when the load and displacement increased. Besides,
for PS1 and PS3, it can be found that the magnitudes of two peaks were different, where the strap
experienced a larger tension on its top side. It indicated that the saddle might have an offset
upwards under the monotonic shear loading. Also, for a given displacement, PS3 would have a
larger maximum strain than PS1, which is because PS3 experienced greater axial load than PS1.
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Figure 5-21. Strain distribution on Sensor 13 at load of 9000 Ibs.
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Figure 5-22. Maximum strain on Sensor 13

5.1.4 Comparison of PowerSeal saddles with different straps

10 12

Fiber-optic results of PowerSeal saddles with different straps (original straps and low-
capacity straps) are compared and analyzed to access the impact of these two kinds of straps.

The results of the strain distribution on Sensor 7 at loading of 9000 Ibs. for PS2 (with
original straps) and PS2-New Straps (with low-capacity straps) are shown in Figure 5-23. The
results of the maximum strains changing with the loading and displacement on Sensor 7 for the
two tests are shown in Figure 5-24. In the longitudinal direction, PS2 (with original straps)
would cause a larger strain on the pipeline under the monotonic shear loading.
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Figure 5-23. Strain distribution on Sensor 7 at load of 9000 Ibs.
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Figure 5-24. Maximum strain on Sensor 7

The results of the strain distribution on Sensor 8 at loading of 9000 Ibs. for PS2 (with
original straps) and PS2-New Straps (with low-capacity straps) are shown in Figure 5-25. The
results of the maximum strains changing with the loading and displacement on Sensor 8 for the
two tests are shown in Figure 5-26. In the circumferential direction, PS2 (with original straps)
would cause a larger strain on the pipeline in terms of the magnitude under the monotonic shear

loading.
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Strain distribution on Sensor 8 at load of 9000 Ibs
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Figure 5-25. Strain distribution on Sensor 8 at load of 9000 Ibs.
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Figure 5-26. Maximum strain on Sensor 8

The results of the strain distribution on Sensor 13 at loading of 9000 Ibs. for PS2 (with
original straps) and PS2-New Straps (with low-capacity straps) are shown in Figure 5-27. The
results of the maximum strains changing with the loading and displacement on Sensor 13 for the
two tests are shown in Figure 5-28. On the straps, it was worth noting that PS2-New Straps
would have a very different strain distribution trend than PS2, which would experience
compression on the bottom side and tension on the top side. PS2-New Straps would also
experience larger maximum strains than PS2 under the same loading and displacement
conditions.
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Figure 5-27. Strain distribution on Sensor 13 at load of 9000 Ibs.
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Figure 5-28. Maximum strain on Sensor 13

6 Finite Element Analysis

6.1 OVERVIEW OF NUMERICAL MODEL

The finite element analysis was conducted to examine the behavior of the PowerSeal saddle
and the pipeline under monotonic shear loading using ABAQUS software [2]. The geometries of
the saddle and the pipe models were generated to match the experimental setup. The isotropic 3D
solid continuum element (C3D8R) is used for the finite element meshes in the analysis (Figure
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6-1). The number of elements and nodes in the finite element model (FEM) are 203,875 and
173,796, respectively.

The boundary and loading conditions are briefly summarized as follows. One pipe end was
fixed in X, Y, Z directions, while another end of the pipe was allowed to move horizontally in z
direction as the lab test. The FEM enables contacting and sliding interactions between the pipe and
the saddle. The normal behavior of the interaction is set as hard contact in ABAQUS, and the
friction coefficient of the tangential behavior is set as 0.5 according to the standard friction
coefficient between materials of ductile iron and stainless steel [3].

The modeling process begins with applying an 85-ft-Ib torque on each bolt. 70 psi water
pressure was applied on the inner surface of the pipe. Then the shear loading was applied on the
saddle with 3 inches displacement. This FEM was used to verify PS2 (PowerSeal saddle with 85-
ft-Ib torque on the bolts).

Figure 6-1 3-D FE model mesh for saddle test

6.2 DETERMINATION OF RUBBER INTERFACE

The rubber interface between saddle and pipe is modelled using a series of coupled spring
elements to reduce computation cost with little effect on result accuracy as shown in Figure 6-2.
The spring stiffness in normal and tangential directions were calculated based on the properties of
the nitrile rubber (NBR) used for the PowerSeal saddle.
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Figure 6-2 Coupled spring model

The spring stiffness was calculated as follows using Hook law.
Af =k-Ax=Ac-A=Ac-E-A

A _Ax
£
Ax
k-Ax:T-E-A
k_EA_n(d%—df)E
 h 4h

where E is the young’s modulus; A is the rubber interface area; h is thickness of the rubber; di and
d2 are the inner and outer diameters of the rubber respectively; k is the spring stiffness calculated
by Hook law: Af = k - Ax.

6.3 DETERMINATION OF MATERIAL PARAMETERS

Plastic properties are included in case the yielding stress is reached.

Table 6-1 presents the material properties of the ductile iron pipe and saddle used in the
tests. Plastic properties are included in case the yielding stress is reached.

Table 6-1. Material parameters

Densit Young’s Poisson’ Yield Ultimate
Part : 3y Modulus o1sson's Strength Strength | Elongation
(Ib./in3) . Ratio ; ;
_ _ (psi) (psi) (psi)
Ductile Iron Pipe 0.28 23,500,000 0.29 42,000 60,000 10%
(plastic)
Saddle steel 0.286 25,700,000 0.3 N/A N/A N/A
(elastic)

6.4 FEM RESULTS & DISCUSSIONS

6.4.1 Overview of FE analysis

Figure 6-3 shows the Mises stress contour of the pipe and saddle when the displacement
reaches 1.1 inches where the water leakage initiated in the lab test. The maximum Mises stress
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was found around the strap and the connection area between the bolts and the straps. Besides, when
the applied shear loading was increasing, the left area on each strap will be detached from the pipe.

S, Mises

(Avg: 75%)
+5.420e+06
+1.041e405
+9.538e+04
+8.671le+04
+7.804e4+04
+6.937e+04
+6.070e+04
+5.203e4+04
+4.336e+04
+3.468e+04
+2.601e4+04
+1.734e+04
+8.671e+03
+2.316e-01

Figure 6-3 Coupled spring interaction model
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6.4.2 Comparison of the FEM results and experimental fiber-optic data
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Figure 6-4 and Figure 6-5 indicate the locations of longitudinal and circumferential sensors
on the pipe.
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Figure 6-4 Location of longitudinal sensors on the pipe: S1, S2, S7 (the blue segment
along the longitudinal direction of the pipeline)
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Figure 6-5 Location of circumferential sensor on the pipe: S8 (the blue segment along
the circumferential direction of the pipeline)

Figure 6-6 shows the comparison of longitudinal strain on the pipe from the FEM
results and fiber-optic (FO) data. Sensor 1, Sensor 2, and Sensor 7 measured the longitudinal
strain along the pipeline, and Sensor 8 measures the circumferential strain of the pipeline near
the saddle. The FEM results overall match the FO data. Both the FEM and FO results show
that the strain on Sensor 1 and Sensor 7 were in tension, and Sensor 2 was in compression.
Sensor 8 indicates that the pipe was squashed in the transverse cross-sectional plane.
Theoretically, the total strain obtained is mainly consisted of shear force-induced strain and
moment-induced strain. As it can be found from the plots, the strain values in FEM are always
higher than that of FO strain, which might be because the fiber-optic sensors were not installed

in an ideal way, where some parts were not tightly attached on the surface.
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Figure 6-6 Comparison of strains on the pipe

Figure 6-7 shows the locations of corresponding sensors on the saddle straps.
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Figure 6-7 Locations of circumferential sensors on the saddle straps: S9 and S13 (the
blue segment along the circumferential direction of the pipeline)

It can be observed from Figure 6-8(a) that the strap was under tension as simulated by the
FEM. The strain from two ends of the strap to the center is increasing and the maximum strain
peak around 1200 pe near the center. It is reasonable because the middle area of strap as shown in
Figure 6-8(b) was fully contacted to the pipe compared to the ends of strap.
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Figure 6-8 (a) Comparison of strain of S13; (b) Back view of saddle setup
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In Figure 6-9(a), the blue line (FEMmiddle) represents the circumferential strain in the
midline of the strap. Although the trend can be matched between FO and FEMmiddle, there
is a difference of the strain magnitude. The reason could be that the location of Sensor 9 may
not be attached as straight as expected, and a tiny location difference could lead to non-
negligible strain differences. Therefore, a different path was simulated (Figure 6-9 (d)) and
the results can basically match the FO data.
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Figure 6-9 (a) Comparison of strain of S9; (b) Circumferential strain plot on strap; (c) Strain
path of the FEM-middle; (d) Strain path of FEM-modify
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7 Conclusions

This report discusses the results of the experimental program focused on the performance
of service saddles under monotonic shear loading. A performance of the service saddles from
PowerSeal was compared to that of the benchmark saddle. Based on the test results of conventional
instruments, the following was concluded. First, the PowerSeal saddle does not fail in a dramatic
way resulting in an explosive water leak as happened in the case of the benchmark saddle. Second,
the PowerSeal saddle has at least a 60% greater force capacity than that of the benchmark saddle.
Third, the PowerSeal saddle has at least a 40% greater displacement capacity than that of the
benchmark saddle. Fourth, the PowerSeal saddle with the original straps has similar displacement
capacities but 47% greater force capacity than that of the one with the low-capacity straps.

According to the test results of fiber-optic sensors, the following was concluded. First, the
fiber-optic result was validated by the strain gage data. Second, the PowerSeal saddle and the
benchmark saddle would lead to similar strains on the pipeline. Third, the PowerSeal saddle with
smaller torques tends to cause larger strains on the pipeline in terms of the magnitude. Fourth, the
PowerSeal saddle with the low-capacity straps would result in smaller strains on the pipeline
compared to the one with the original straps.

The experimental results were then compared to the finite element model. The strain
distribution match well between the experiments and the simulation, indicating that the proposed
FEM with the spring model can predict the behavior of this saddle test. Besides, the FEM shows
the weakest area are the strap and the area between bolts and strap. The proposed model can be
used in future parametric studies and as a reference for the future saddle design.
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Appendix A: Specifications of PowerSeal saddle

PIPELINE PRODUCTS CORPORATION

©
Model 3450AS Stainless Steel SaddleCorp

Certified to NSF/ANSI-61

Features and Benefits

Materials do not compromise the integrity of the pipeline.

P —

Stud bolts MIG welded to straps, heavy hex nuts with fusion bonded coating to prevent
seizing and galling. Never Gall coating available for extra anti-seize protection.

3. SaddleCorp are available for flare, pack, PowerJoint attachment fittings for (3/4", 1", 1.5", 2").
4. SaddleCorp o-ring gasket design incorporates both hydrostatic and mechanical forces to
produce a dynamic seal.

5. Available in double wide straps or one single wide strap.

6. Certifed by IAPMO R&T to NSF/ANSI 61 for materials safety only, and to NSF/ANSI 372
for low lead compliance.

Stainless steel adapter
/,_,\ p

e {[ N Stainless steel ball

NBR o-rings T ‘ )\ —
: 1A O

. o ~ 304 Stainless steel
Stainless steel valve key Wb fie stud/ nut/ washer

Vulcanized NBR rubber
ball seats

Stainless steel casting
saddle top as per
ASTM A743.

Patented NBR
TwinSeal o-ring gasket

Stainless steel type

304 straps
NSF/ANSI 61
IAPMO
1-800-800-0932 940-767-5566 www.powerseal.com FITTING SOLUTIONS FOR HARSH ENVIRONMENTS
C ®

Figure A-1. Specifications of A 3450AS: page 1 (provided by PowerSeal).
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@ PowerSeal
Model 3450AS Stainless Steel SaddleCorp - A 4 e

Certified to NSF/ANSI-61

Scope

The intent of the specification is to receive 37 diameter and up all cast body stainless
steel SaddleCorp. The SaddleCorp furnished shall be equivalent to Model 3450AS as
manufactured by PowerSeal Pipeline Products Corporation.

Design and Material Specification

The stainless steel SaddleCorp shall meet or exceed all material specifications as listed below:

1. SaddleCorp should incorporate both saddle and corp stop in one single cast piece, and
shall be stainless steel as per ASTM A743.

2. The saddle body shall have an o-ring gasket permanently attached to the casting at the
factory. The TwinSeal o-ring gasket along with all seals shall be made from NBR, they
shall be free from porous areas, foreign material, and visible defects, all made from 100%
new rubber. NBR can resist temperatures between -25 to +248°F.

(98]

The MIG welded strap shall be constructed of stainless steel type 304 and shall include
weld attached 5/8” stainless steel 304 stud bolts. All welds shall be passivated to return
their inherent corrosive resistance.

4. Adhesive will be used on adapters to prevent disassembly during installation.

N

There shall be no paper or plastic adhesive labels attached to the saddle, any information
appearing on the saddle shall be ink stenciled.

6. SaddleCorp 1s NSF/ANSI 61 certified where applicable.

Material Specification

Part Name Material Mat. specs
SaddleCorp Body| Stainless Steel 18-8 ASTM A743
Strap Stainless Steel Type 304 | ASTM A240
Nuts & washers | Stainless Steel Type 304 | ASTM A193
Corp gaskets NBR ASTM D2000
O-ring gasket NBR ASTM D2000
iam (all, adapter,( o . less Steel 18-8 ASTM A743
ey)
NSF/ANSI 61
IAPM‘O
1-800-800-0932 940-767-5566 www.powerseal.com FITTING SOLUTIONS FOR HARSH ENVIRONMENTS
C ®

Figure A-2. Specifications of A 3450AS: page 2 (provided by PowerSeal).
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&) PowerSeal
Model 3450AS Stainless Steel SaddleCorp . ‘ e

Certified to NSF/ANSI-61

Model 3450AS

900

Flare PowerJoint - CTS Pack joint - IPS/CTS

Pipe Size Pipe OD Range Strap width
mm. in. E in.
3 80 B 345-405 88-103
A 4.00-4.50 102-114
4 100 B 4.74 -563 120 - 143
C 474 -514 120-131
A 6.00 - 6.63 152- 168 1.5" each stra
6 150 B 6.84-7.64 174 - 194 ’ P
C 6.63 - 6.90 168 - 175 or
A 8.00-8.63 203-219 . p
3" single wide strap
8 200 B 8.54-10.10 216 - 257 small outlet
o] 8.63-9.05 219-229
4" single wide strap
A 10.00 - 11.10 254 - 282 big outlet
10 250
B 10.64 - 12.12 270-308
A 12.00 - 13.20 305-335
12 300
B 12.62 - 14.32 321-364
NSF/ANSI 61
IAPMO
1-800-800-0932 940-767-5566 www.powerseal.com FITTING SOLUTIONS FOR HARSH ENVIRONMENTS
C ®

Figure A-3. Specifications of A 3450AS: page 3 (provided by PowerSeal).
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Appendix B: Photos of Tested Specimens

Figure B-1. Failure mode of benchmark saddle
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Figure B-2. Erroneously supplied straps for PowerSeal saddles with lower capacity (not
reported herein)
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Figure B-3. PowerSeal saddle with correct straps: after a test (typical)
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Figure B-4. Side view of PowerSeal saddle: at completion of a test (typical)

45



Figure B-5. PowerSeal saddle with correct straps: during a test (typical)
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Appendix C: Distributed Fiber Optic Sensing

Using the physical properties of light, fiber-optic sensing can detect changes in
temperature, strain, and other parameters when light travels along a fiber, which uses fiber-optic
cables as sensors and can measure over long distances at 100 to 1000s of points on a single cable
or multiplexed cables depending on the technology used. Compared to the other sensing
technologies, fiber-optic sensing has distinct advantages such as small size, light weight, and
strong resistance to corrosion and water.

LUNA Interrogator

Figure C-1. LUNA ODiSI 6000 Series optical distributed sensor interrogator

LUNA ODiSI 6104 is an optical distributed sensor interrogator, which can provide
thousands of strain or temperature measurements per meter of a single high-definition fiber
sensor. High-Definition (HD) Sensors - Strain & Temperature (HD-SC) temperature sensors
utilize an advanced interrogation mode of the ODISI to increase the accuracy of measurements
when the sensors are subjected to strain, such as in embedded and surface-mount installations. It
can achieve sensor gage pitch (the distance between two measurement points) as small as 0.65
mm, the sensor length up to 100 m, and measurement rate up to 250 Hz. More details about the
LUNA interrogator can be found https://lunainc.com/sites/default/files/assets/files/data-
sheet/Luna%200DiS1%206000%20Data%20Sheet.pdf.
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Fiber-optic Cable

Fiber

Poly-elastic Shell

Figure C-2. NanZee NZS-DSS-CO07 cable

NanZee NZS-DSS-CO07 fiber-optic cable has a diameter of 0.9 mm, where the fiber is coated
by a poly-elastic shell, which not only improves the strength and surface friction of the cable, but
also reduces the overall rigidity and make it easier to be attached on the surface of the structure.

48



Appendix D: Test Results of Fi

Test Results for Benchmarkl
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Strain distribution on Sensor 11 at displacement of 0.8 inch

Sensor 11 Max Strain vs. Load

Sensor 11 Max Strain vs. Displacement
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Strain distribution on Sensor 4 at displacement of 0.8 inch

Sensor 4 Max and Min Strain vs. Load

Sensor 4 Max and Min Strain vs. Displacement
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Test Results for PS1 (Sensor 1-4 had no data due to the channel connection issue)
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Strain distribution on Senser 5 at displacement of 0.8 inch

Sensor 5 Max Strain vs. Load

Sensor 5 Max Strain vs. Displacement
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Strain distribution on Sensor 11 at displacement of 0.8 inch
500

Sensor 11 Max Strain vs. Load

Sensor 11 Max Strain vs. Displacement
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Strain distribution on Senser 3 at displacement of 1.2 inch

Sensor 3 Max Strain vs. Load

Sensor 3 Max Strain vs. Displacement
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Strain distribution on Sensor 9 at displacement of 1 inch

Sensor 9 Max Strain vs. Load

Sensor 9 Max Strain vs. Displacement
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Test Results for PS3 (Sensor 9 is not included due to the weak signals)
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Strain distribution on Sensor 1 at displacement of 1 inch

Sensor 1 Max Strain vs. Load

Sensor 1 Max Strain vs. Displacement
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Strain distribution on Sensor 7 at displacement of 0.7 inch

Sensor 7 Max Strain vs. Load

Sensor 7 Max Strain vs. Displacement
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Test Results for PS2-NewStraps

Sensor 1 Max Strain vs. Load

Sensor 1 Max Strain vs. Displacement

Strain distribution on Sensor 1 at displacement of 0.8 inch 2
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Strain distribution on Sensor 6 at displacement of 0.8 inch Sensor 6 Max Strain vs. Load Sensor 6 Max Strain vs. Displacement
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Strain (ue)

Strain distribution on Sensor 12 at displacement of 0.8 inch Sensor 12 Max Strain vs. Load Sensor 12 Max Strain vs. Displacement
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Appendix E: Finite Element Results

The comparison of the FEM reults and FO data are presented below, where Sensor 10, Sensor 11, and Sensor 12 are not
presented due to the uncertainty of the specific locations.
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